Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tong Bai* and Yun-Fei Du

School of Pharmaceutical science and
Technology, Tianjin University, Tianjin 300072,
People's Republic of China

Correspondence e-mail:
styxpolaris@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in main residue
R factor $=0.061$
$w R$ factor $=0.239$
Data-to-parameter ratio $=11.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

3-Benzyl-1-(3-nitrophenylsulfonyl)-1H-pyrazol-5-amine

The title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$, was synthesized by the reaction of 3-oxo-4-phenylbutanenitrile and 4-nitrobenzenesulfonohydrazide. The pyrazole ring is almost planar. The two O atoms of the nitro group are disordered in a 0.84 (2):0.16 (2) ratio.

Comment

Pyrazoles have a widespread occurrence as substructures in a large variety of compounds with important biological activities and pharmacological properties. They can be used in the synthesis of a number of biologically active compounds (Dastrup et al., 2004; Haddad \& Baron, 2002). The title compound, (I), was synthesized by the reaction of 3-oxo-4phenylbutanenitrile and 4-nitrobenzenesulfonohydrazide. An X-ray structure determination of (I) was carried out and the results are reported here.

(I)

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. In (I), the pyrazole ring is almost

The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 7 November 2006 Accepted 20 November 2006

Figure 2
The packing of (I), viewed down the a axis.
planar, with an r.m.s. deviation of 0.0159 (3) A. The dihedral angles between the pyrazole ring and the two benzene rings $\mathrm{C} 5-\mathrm{C} 10$ and $\mathrm{C} 11-\mathrm{C} 15$) are 73.6 (3) and $63.6(3)^{\circ}$, while the dihedral angle between the two benzene rings is 43.2 (3) ${ }^{\circ}$. The S atom has a distorted tetrahedral geometry, with the $\mathrm{N} 1-$ $\mathrm{S} 1-\mathrm{C} 11$ and $\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 11$ angles deviating significantly from the ideal tetrahedral value (Table 1). In the crystal structure, there are intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between the amino N atom and the N atom of the pyrazole ring, which stabilize the crystal structure (Table 2 and Fig. 2).

Experimental

The title compound was synthesized by the reaction of 3-oxo-4phenylbutanenitrile $(1.25 \mathrm{mmol})$ and 4-nitrobenzenesulfonohydrazide (1.25 mmol) in glacial acetic acid (5 ml) was stirred at room temperature for 6 h . The product was obtained (yield 70%) by silicagel column chromatography. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a dichlormethane solution.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$

$M_{r}=358.37$
Triclinic, $P \overline{1}$
$a=6.1838$ (10) \AA
$b=8.4685(14) \AA$
$c=16.608(2) \AA$
$\alpha=95.273(7)^{\circ}$
$\beta=96.009(8)^{\circ}$
$\gamma=105.084$ (14) ${ }^{\circ}$

Data collection

Rigaku Saturn diffractometer

 ω scansAbsorption correction: multi-scan
(REQAB; Jacobson, 1998)
$T_{\text {min }}=0.948, T_{\text {max }}=0.961$
$V=828.7$ (2) \AA^{3}
$Z=2$
$D_{x}=1.436 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$

8136 measured reflections 2901 independent reflections 1859 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.239$
$S=1.00$
2901 reflections
254 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1676 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.79 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.079 (18)

Table 1
Selected bond angles (${ }^{\circ}$).

O1-S1-N1	$106.65(15)$	O2-S1-C11	$109.17(16)$
O2-S1-N1	$106.53(15)$	N1-S1-C11	$102.06(16)$
O1-S1-C11	$110.16(17)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.85(5)$	$2.17(5)$	$2.997(4)$	$162(4)$

Symmetry code: (i) $x-1, y, z$.
H atoms attached to the C atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. N -bound H atoms were refined with $\mathrm{N} 3-\mathrm{H} 3 A=0.93$ (6) $\AA, \mathrm{N} 3-\mathrm{H} 3 B=0.85$ (5) \AA, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent). The two O atoms of the nitro group are disordered over two sites; the occupancies are 0.84 (2) and 0.16 (2).

Data collection: CrystalClear (Molecular Structure Corporation \& Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Dastrup, D. M., Yap, A. H., Weinreb, S. M., Henry, J. R. \& Lechleiter, A. J. (2004). Tetrahedron, 60, 901-906.

Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.
Molecular Structure Corporation \& Rigaku (1999). CrystalClear. Version 1.3.6. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Haddad, N. \& Baron, J. (2002). Tetrahedron Lett. 43, 2071-2173.
Rigaku/MSC (2005). CrystalStructure. Version 3.7.0 MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

